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Abstract-A new high-order refined shear deformation theory based on Reissner's mixed variational
principle in conjunction with the state-space concept is used to determine the deflections and stresses
for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials
are introduced to approximate the in-plane displacement distributions across the plate thickness.
Numerical results are presented with different edge conditions, aspect ratios, lamination schemes
and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir
indicates that the present theory accurately estimates the in-plane responses.

I. INTRODUCTION

Three-dimensional elasticity solutions for the bending ofsimply supported thick orthotropic
rectangular plates and laminates were obtained by Srinivas and Rao (1970), Srinivas et al.
(1970), Hussainy and Srinivas (1975) and Pagano (1970). The Navier solution of simply
supported rectangular plates was developed by Whitney and Leissa (1969) for classical
laminate theory, Whitney and Pagano (1970), Bert and Chen (1978) and Reddy and Chao
(1981) for the first-order shear deformation (i.e. the Reissner-Mindlin plate) theory, and
by Reddy (1984a,b) and Reddy and Phan (1985) for refined shear deformation theories.
The Levy type solutions were developed by Reddy et al. (1987) for symmetric laminates
with different combinations of free, clamped and simply supported boundary conditions
by using the first-order shear deformation theory. Khdeir et al. (1987) later extended
Reddy's work by using refined shear deformation theory.

Murakami (1986) proposed an improved in-plane response theory based on Reissner's
(1984) mixed variational principle and applied it to cylindrical bending problem of lami­
nated plates, the improvement was achieved by including a zig-zag shaped function to
approximate the in-plane displacements across the thickness. However, this theory cannot
exactly describe the deformation of the anti-symmetric and irregular laminated plates.

Based upon Murakami's theory, Legendre polynomials are introduced in the dis­
placement field and the transverse normal strain is also included in present theory so
that the in-plane displacement distribution for arbitrary laminated configurations can be
determined exactly. The advantage of using Reissner's mixed variation principle is that
it automatically yields the appropriate shear correction factors for the transverse shear
constitutive equations. Other attractive features of the present theory are: (1) the continuity
condition of transverse shear stresses at the interfaces is satisfied; (2) the effects of the
transverse shear and transverse normal strains are accounted; (3) the number of equations
remains unchanged as the number of layers increases.

The accuracy of the present theory is examined by applying it to bending problem of
rectangular laminates with two opposite edges simply supported and the remaining edges
subject to a combination of free, simply supported and clamped boundary conditions.
Different aspect ratios, lamination schemes and loadings are considered. The state-space
concept is used to solve the ordinary differential equations.
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2. GOVERNING EQUATIONS

Consider an N-layer laminated composite plate, shown in Fig. 1. The following
notation, ( )(k), k = 1, 2 ... N, will designate quantities associated with the kth layer. The
thickness of each layer is n(k)h. Unless otherwise specified, the usual Cartesian indicial
notation is employed where Latin and Greek indices range from 1 to 3 and 1 to 2,
respectively. Repeated indices imply the summation convection and ( ),; denotes partial
differentiation with respect to Xi'

Constitutive equations for orthotropic layers (Murakami, 1986) :
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Fig. I. Plate geometry coordinate system and trial in-plane displacements.
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interface continuity conditions

uik)=ufk+t) and (JW=(J~~+t) k= 1,2 ... N-l;

upper and lower surface stress conditions
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(3)

h
on X3 =-

2
h

on X3 = - 2·

(4a)

(4b)

Reissner's mixed variational principle was applied to N-layer composite plate whose
middle surface occupies a domain D in the x t, x2-plane:

(5)

where aDT denotes the boundary of D with outward normal Do on which tractions Tj are
specified and A (k) represents the x3-domain occupied by the kth layer. Also r~~) denote the
approximate transverse stresses and e~~) ••• implies the appropriate right-hand side of eqn
(lb).

The high-order laminated plate theory, which takes into account the effect oftransverse
shear strains, is obtained by including the Legendre polynomials of order n = 1,2, 3, with
respect to the x3-coordinate to a zig-zag in-plane displacement variation ofamplitude S;(x \,
X2) across the plate thickness.

The appropriate trial functions used in connection with Reissner's mixed variational
principle eqn (5) are taken to be:
(a) trial displacement field (see Fig. 1)

where' == 2X3/h and Pn(O are the Legendre polynomials of order nand eIl3 == 0, X~k) is a
local x3-coordinate system with its origin at the center X~k6 of the kth layer, i.e.

(7)

(b) trial transverse and normal stresses

r~kJ(Xt,X2,X3) = Q£k)(XJ,X2)F\(z)+R£k)(XJ,X2)F2(z)

+ J£k) (Xl ,X2)F3(z) + [T£k-l)(Xl' X2)+T£k)(Xt, x2)]F4 (z)

+ [T~k-l)(Xl' X2) - nk)(Xl' x2)]F5(z) (8a)
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where
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rW(Xh X2' X3) = Q~k)(Xl' x2)F1(z) + R~k)(Xh x2)F6 (z)

+ J~k)(XI' x2)F3(z) + Ilj')(xl, x2)F7 (z)

+ [T~k-l)(Xl' X2) + nk)(Xj, x2)]F4 (z)

+ [T~k-l)(X I, X2) - n k)(X j, x2)]Fs(z), (8b)

5 ( 4 15 2 9)
Fj(z) = n(k)h 2lz - 2 z + 16 '

(9)

Also

(Q \k) R(k) J(k)) = f (1 X(k) x(k)2)r(k) dx
I , I 'I - '3, 3 3, 3

Alk)

I (k) = f X(k)3 r (k) dx
3 - 3 33 3'

Alk)

(lOa)

(lOb)

In eqn (8), T~k-l) and T(l) are the values of r~~) at the top and bottom surfaces of the
kth layer, respectively, from eqn (4)

(ll)

The functions F;(z), i = 1 ... 8 are obtained by first noting that eqn (6) yields cubic
variations across the plate thickness of in-plane stresses. From the equilibrium equations
(i.e. I1J~~ = 0), transverse stresses r~kJ and rW may, as a result, be represented by polynomials
of degree 4 and 5 in z, respectively. Their corresponding coefficients are then computed by
using eqns (lOa, b). This yields the functions F;(z).

Substituting eqns (6) and (8) into eqn (5), using Gauss' theorem and the orthogonality
relationship of the Legendre polynomials, one obtains laminated plate equations:
(a) equilibrium equations

h + _
M.;,.-N3;+ l(T; + T; ) = 0

Z.;,. -K3;- [Tt -( -l)NT;-] = 0

h2

L.".-3M3;+ 4(Tt - Tn = 0

(l2a)

(l2b)

(l2c)

(12d)
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(l2e)

( _I)k_2_ x lk) (~)2P (r)J,!I~)dX' (Bb)n(k)h 3, 2 2." 3, 3 ,

(b) constitutive equations
(1) for transverse stresses

8J(k) n(k)h
Qlk) _ a +__ (Tlk-I) + r<.,k})

a (n (k)h) 2 30 a a

::= ~hnlk)c~k) [U3,a+'I'a+Sa( _l)k n(;)h +hnbk)('I'3,a+3~a)

(14a)

1 n(k)2h
Rlk) (Tlk-I) _Tlk»

h a 40 a a

(14b)

(l4c)

(14d)

(2) for normal stresses
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1 32/(k) n (k)2h
_ R(k) _ 3 +__ (T(k-I) _ T(k»
h 3 5n(k)2h3 140 3 3
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= ~h2n(k)3e(k).l' + _1_1_ h2n (k)3 [q; +(_l)k _2_ S+ 3hn (k) 1'+ 3h
2

(5n(k)2 - ~)<I>J
350 331.,3 1050 n(k)h 0 I., 2 0 4 '

(I5b)

h [n(k) (n(k) n(k+I») n(k+l) J
=- -T(k-I)+1O -+-- T(k)+ __ T(k+l)

18 elk) 3 elk) e(k+ I) 3 e(k+ I) 3 .
33 33 33 33

(15e)

(15d)

(15e)

In eqns (14a-e) and (15a-d), k ranges from 1 to N, while in eqns (14d) and (15e), k
ranges from 1 to (N -1). Also, no summation on tX is implied in eqn (14) and

(k)
C~k) == <50IeW+<502e~~,

n(k) _ X30
o - h

0 V I •I V2.2q;
'P1,1 'P2,2

S SI,I S2.2 [c 13T),
~-

e23
~I,l ~2,2

<I> <1>1,1 <1>2,2

(I 6)

(17)

By solving eqns (14) and (15), Qlk), Rlk),ilk), i~k) and Tlk) are obtained in terms of V"
'P j , Sj, ~j and <1>0 and their derivatives. As a result, the quantities N 3i , M 3;, K 3i, Z3h L 3i of
eqn (Bb) can be determined as functions of these displacement variables. Sueh expressions
will automatically include the appropriate shear correction factors by virtue of the Reissner
mixed variational principle.

The equilibrium equations (12) are supplemented with the following suitable boundary
conditions:

specify Vi or Noivo

specify 'Pi or Mo;vo

specify Sj or ZojVo

specify ~i or Loiva

specify <I>a or Ppovp. (I8)

The remaining constitutive equations for Nop, Mop, Zap, Lop and PoP are obtained by
substituting eqns (Ia), (6) and (8b) into eqn (13a) to yield
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where tj= [NlhN22,NI2f,lj= [U1,1' U2,2' U1,2+ U2.1f with same expressions for Af,
'f .. ·f, <!>' [Nul··· [P<I>] are 3 x 3 matrices, [C](k) is a 15 x 5 matrix and fN ••• fP are 1 x 4
vectors.

3. BENDING OF RECTANGULAR LAMINATED PLATES

The proposed theory can be used to solve the bending problem of rectangular plates
for which two opposite edges are simply supported. The other two edges can each have
arbitrary boundary conditions. Here we assume that the edges parallel to the x2-axis are
simply supported, and the origin of the coordinate system is taken as shown in Fig. 2. The
simply supported boundary conditions can be satisfied by trigonometric functions in x I'
The resulting ordinary differential equations in X2 can be solved using the state-space
concept.

The prescribed boundary conditions on the top and bottom surfaces of the plate are

z,

if I
I I, I

b II I

I I
I I
II I

G

Fig. 2. Geometry and coordinate system of rectangular plate.

SAS 31:18-E
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Tt = Tt = 0, Tt = q
h

onx3 =-
2

h
onx3 = -"2'

(20a)

(20b)

The following representations of the displacements and loading are assumed:

(21)

(22)

where r:J. = mnla and Vim'" [3m and Qm denote amplitudes of UI '" ~3 and q, respectively.
It is easily proven that eqn (21) can satisfy boundary condition of simply supported on
Xl = 0, a i.e. at Xl = 0, a

Then inserting eqn (21) into constitutive equations and these with eqn (22) in turn into the
equilibrium eqn (12), yields a system of fourteen ordinary differential equations in the X2­

coordinate, which can be reduced to a single matrix differential equation using the state­
space concept (Franklin, 1986)

X' = AX+B.

This can be done by introducing the variables

(24)

where A is a 28 x 28 matrix which depends on the volume fractions n (k) and elastic constants
cij and B is a I x 28 vector which depends on Qm'

The solution of eqn (24) is given by

x = eAX2K+eAxz fX
2

e-A~Bd'1,
-b{2

(25)

where K is a 1 x 28 constant vector to be determined from the boundary conditions, while
eAxz is defined by
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(26)

where [L] is the matrix of eigenvectors, A;(i = 1,2 ...28) denote the distinct eigenvalues
associated with the matrix A and [L]-1 is the inverse of the matrix [L].

The following boundary conditions are used on the remaining two edges (i.e. the edges
parallel to the Xl-axis) at X2 = ±b/2:

simply supported

VI ='1'1 =Sl =~l = <Ill =0

V 3 = '1'3 = S3 = ~3 = 0

clamped

free

VI = '1'1 = Sl = ~1 = <Ill 0

V 2 = '1'2 = S2 = ~2 = <1>2 = 0

V3='¥3=S3=~3=0;

N 12 = N n = N 23 = 0

M l2 =M22 =M23 =0

2 12 = 2 22 = 2 23 = 0

L 12 = L 22 = L 23 = 0

P 12 = P22 = O.

(27a)

(27b)

(27c)

4. NUMERICAL RESULTS AND DISCUSSION

The following numerical examples are presented:
(a) Numerical results are presented for orthotropic and symmetric cross-ply (0°/90% °)
plate with same thickness layer subject to three types of loads; uniformly distributed load
(qo), triangular distributed load (2qo) and concentrated load p, as shown in Fig. 3.

The following dimensionless orthotropic material properties are used:

E l
Eo = 20.83

G13
Eo = 6.10 E;; = 3.71 Eo = 6.19

Vl2 = Vl3 = V23 = 0.44 Eo = I X 106 psi.

flo

~.
2 2

Fig. 3. Various types of transverse loads.
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All results are compared with Khdeir's solution (Khdeir et al., 1987) as shown in
Tables 1-3. Tables 1-2 contain center deflections U3 for orthotropic and symmetric cross­
ply (0°/90% °) plates, while Table 3 contains non-dimensionalized axial stresses (j] 1 for
cross-ply (0°/90% °) plate.

The following notation has been used throughout the tables:

SS simply supported at X 2 = -b/2 and at X 2 = b/2;
CC clamped at X2 - b/2 and at X 2 = b/2;
FF free at X2 = b/2 and at X2 = b/2;
SC simply supported at X 2 = -b/2 and clamped at X2 = b/2;
SF simply supported at X 2 = - b/2 and free at X2 b/2;
CF clamped at X2 = - b/2 and free at X2 = b/2;
UN uniformly distributed load;
TR triangular distributed load;
PL point load at the center of the plate.

Figure 4 shows the thickness variations of axial stresses (j II of (0°/90 0 /0°) laminated
plate for various boundary conditions.
(b) Center deflections and stresses for cross-ply plates under sinusoidal transverse loading

are calculated. The plates are simply supported at four edges. The numerical results are
compared with exact elastic solution obtained by Pagano (1970).

The following material properties are used:

0.2

E1 = 25
Eo

i
0

2
= 0.5

Eo

Eo = I x 106 psi.

We follow Pagano's non-dimensionalization and write the center deflection and stresses
in the form:

Also

Tables 4-6 show the center deflections and in-plane stresses and transverse shear
stresses of the various side-to-thickness ratios for cross-ply rectangular plate (0°/900 /0°,



Table I. Center deflections 113 of orthotropic plates

SS CC FF SC SF CF
Khdeir's Present Khdeir's Present Khdeir's Present Khdeir's Present Khdeir's Present Khdeir's Present ttl

ajb hja Loading solution solution solution solution solution solution solution solution solution solution solution solution
0

=0-
--------- 5'

UN 6.29 5.632 3.19 3.183 224.4 221.015 4.38 4.137 50.14 49.025 17.055 17.064 OQ

'"0.2 TR 9.60 8.537 5.29 5.198 289.2 284.581 6.98 6.509 66.30 64.607 24.49 23.688 g,
PL 20.95 18.564 14.46 371.4 40.99 38.443

<=
13.131 363.787 17.09 15.071 93.46 89.541 g.

3 =UN 14.23 13.512 5.89 5.881 593.1 590.463 8.74 8.498 124.72 121.714 40.13 39.771 0....,
0.14 TR 21.15 19.874 9.71 9.592 761.9 756.991 13.71 13.017 163.50 160.533 55.13 53.976 ::r

0<;'
PL 42.38 39.931 25.71 24.277 966.8 958.142 31.83 29.976 222.8 199.124 87.19 84.818 ::r

6
UN 2.72 2.293 L53 1.529 226.3 222.999 2.03 1.871 34.64 33.915 8.07 7.873

a
0....

0.2 TR 4.47 3.738 2.68 2.635 291.6 287.178 3.44 3.121 46.13 44.991 11.91 lL534 ~
PL 12.38 10.033 9.10 8.002 374.6 367.125 10.53 8.834 67.12 63.957 23.69 21.839 ::n

=4 0
0-

UN 5.70 5.211 2.66 2.657 599.1 596.741 3.76 3.591 83.60 81.914 17.53 17.079 '"::r
0.14 TR 9.14 8.227 4.66 4.432 769.6 764.697 6.32 5.827 110.34 108.612 25.36 24.302

0
I\)....

PL 23.36 21.003 15.59 14.417 976.6 967.934 18.66 17.144 154.51 151.751 47.13 45.291 0-
0

0'
UN 1.46 1.148 0.88 0.883 227.1 223.913 1.14 1.014 25.97 25.465 4.29 4.213 3

0.2 TR 2.52 1.959 L59 1.552 292.8 288.391 2.01 1.748 34.76 33.936 6.71 6.512 I\)

PL 8.39 6.204 6.32 5.327 376.1 368.745 7.27 5.721 51.86 49.151 15.77 14.267
g.
=5 ;.

UN 2.85 2.494 1.49 1.492 601.8 598.976 2.03 1.911 60.68 58.196 8.87 8.403 0
0

0.14 TR 4.84 4.014 2.70 2.613 773.2 767.899 3.56 3.071 80.51 78.877 13.58 12.978 ....
'<

PL 15.15 13.455 10.69 9.884 981.3 972.176 12.57 11.224 115.45 113.006 29.86 28.035
---

u, = [u,(aj2, 0, O)jqo]Eo, a = 200in.

N
.."o
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Table 2. Center deflections U3 of cross-ply 0"/90°/0° laminates

SS CC FF SC SF CF
Khdeir's Present Khdeir's Present Khdeir's Present Khdeir's Present Khdeir's Present Khdeir's Present

alb hla Loading solution solution solution solution solution solution solution solution solution solution solution solution

UN 6.85 6.376 3.86 3.861 215.9 214.727 5.10 4.905 47.67 47.296 18.86 18.591
0.2 TR 10.23 9.491 6.18 6.123 277.7 276.120 7.87 7.532 62.82 62.211 25.97 25.529

PL 20.61 18.460 14.92 13.83 354.5 351.160 17.34 15.813 87.27 85.245 47.32 43.621
3

UN 14.88 14.421 6.90 6.897 585.5 585.5 9.81 9.674 121.06 120.502 41.87 41.227
0.14 TR 21.80 20.960 11.08 11.026 751.3 748.052 15.05 14.782 158.35 157.397 57.09 56.079

PL 41.18 39.867 26.33 25.818 949.4 944.936 31.99 31.053 213.4 211.454 87.32 85.433
~

3.12 2.811 1.87 1.872 217.8 216.723 2.43 2.274 32.34 32.198 9.03 8.902
s::

UN :J1
0.2 TR 4.99 4.409 3.19 3.135 280.2 278.713 4.00 3.709 42.98 42.663 13.06 12.813 :;:l

O<l
PL 12.47 10.871 9.48 8.485 357.6 354.452 10.85 9.375 61.72 60.065 24.09 22.678 ~

4 ¥2-
UN 6.23 5.927 3.21 3.181 591.4 589.061 4.38 4.212 80.07 79.785 18.88 18.544

0.14 TR 9.78 9.159 5.47 5.431 758.9 755.841 7.18 6.912 105.47 105.008 26.99 26.453
PL 23.01 20.813 16.16 15.832 959.1 945.404 19.00 18.368 146.04 144.705 47.58 46.573

"--"--~... ""--~_. _._~~~-"- .-._~--

-~-----"-"

UN 1.73 1.545 1.08 1.074 218.7 217.661 1.38 1.245 23.78 23.761 4.95 4.887
0.2 TR 2.91 2.514 1.90 1.852 281.3 279.948 2.37 2.112 31.80 31.666 7.53 7.385

PL 8.64 7.109 6.65 5.962 359.1 356.743 7.59 6.949 46.90 45.544 16.11 14.862
5

UN 3.23 2.963 1.82 1.802 594.2 591.939 2.41 2.3]6 57.29 57.232 9.84 9.682
TR 5.36 4.859 3.21 3.196 762.6 759.587 4.13 3.915 75.91 75.726 14.81 14.527
PL 15.19 13.964 11.21 11.014 963.8 959.284 12.97 12.415 107.72 106.813 30.33 29.535

113 = [u3(aI2, 0, O)lqoJEo, a = 200in.



Table 3. Axial center stresses (t II of cross-ply 0°/90% ° laminates

SS CC FF SC SF CF
Khdeir's Present Khdeir's Present Khdeir's Present Khdeir'g Present Khdeir's Present Khdeir's Present ~

alb hla Loading solution solution solution solution solution solution solution solution solution solution solution solution :>
•__""~__.""m.__'.•~ ---,------ .__.~,-'.~~ ..~-, ._------- ~

UN 1.082 0.973 0.482 0.480 19.66 19.082 0.729 0.691 4.272 4.064 1.098 1.020 (IQ

'"0.2 TR 2.115 1.808 1.262 1.I34 26.51 25.554 1.619 1.426 6.513 6.064 2.402 2.148 Q..
~

PL 11.160 10.911 9.792 9.735 43.66 42344 10.386 10.036 l7.708 17.112 12AI9 12.143 g~

3 ::l

UN 2.106 1.982 0.794 0.729 39.54 38.911 1.262 1.209 8.519 8.003 1.622 1.541 0...,
0.14 TR 3.983 3.623 2.077 1.934 53.01 51.648 2.784 2.479 12.766 11.879 3.799 3.481 t:r

PL 17.928 17.001 14.814 14.211 82.76 80.043 16.049 15.133 30.78 28.333 19.17 18.327 f
UN 0.620 0.582 0.289 0.274 19.67 19.091 0.439 0.425 2.602 2.432 0.263 0.238

a
III

0.2 TR 1.305 1.123 0.802 0.739 26.52 25.569 1.032 0.912 4.213 3.843 1.138 0.982 l'l
PL 9.072 8.912 8.082 7.974 43.74 42.827 8.546 8.213 14.181 13.792 10.054 9.862 [4
UN 1.156 1.092 0.455 0.423 39.62 38.925 0.725 0.681 5.278 5.081 0.185 0.385 '"\;

0.14 TR 2.350 2.119 1.260 1.147 53.13 51.992 1.695 1.544 8.319 8.077 1.586 1.478 ll:>..
PL 13.949 13.231 11.835 11.521 83.03 80.565 12.735 12.136 24.05 23.588 14.967 14.001 ~

0-
UN 0.427 0.404 0.215 0.211 19.66 19.098 0.321 0.315 1.673 1.519 0.027 0.024 ~0.2 TR 0.927 0.803 0.588 0.533 26.51 25.573 0.756 0.697 2.879 2.552 0.662 0.612 g,
PL 7.725 7.589 6.890 6.571 43.75 43.142 7.298 6.943 11.859 11.512 8.680 8.328 i:l

5 s-
UN 0.759 0.720 0.321 0.306 39.63 38.952 0.507 0.481 3.492 3.315 -0.175 0.047 8

0.14 TR 1.593 1.369 0.883 0.791 53.16 52.024 1.190 1.067 5.773 5.485 0.808 0.723 ~

PL 11.476 11.029 9.863 9.583 83.14 80.889 10.592 10.029 19.74 18.502 12.645 11.938
~-,.,,'~-~ ..-

if" = 1I11{aI2. O. h/2)/qoEo• a = 2ooin.

...,
e
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Fig. 4. Thickness variations of t1 11 for various boundary conditions (alb = 3, alh = 5, UN):

(a)- SSSS; (b)-SSCC; (c) -SSFF; (d)-SSSC; (e) -SSSF; (f) -SSCF.

b/a = 3) and square plates [0°/90°/90% °, 0°/90° ... 0° (9 layers)) with the same thickness
layer, respectively.

For the side-to-thickness ratio S = 0, the thickness variations ofin-plane and transverse
shear and normal stresses for 0°/90°108 laminated plate are shown in Firr 'i
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Table 4. Center deflections and stresses of 0°/90% ° laminates

S Theory uJ ~II (~) ~22 (~) ~23(0) ~JI(O) ~12G)

Pagano's 2.82 1.14 0.109 0.0334 0.351 -0.0269
solution

4 Present 2.8234 1.1242 0.108 0.03276 0.3558 -0.02748
solution

Pagano's
0.919 0.726 0.0418 0.0152 0.420 -0.0120

solution

10 Present 0.9148 0.7193 0.04152 0.01591 0.4143 -0.01204
solution

Pagano's
0.610 0.650 0.0299 0.0119 0.434 -0.0093

solution

4 Present 0.6047 0.6439 0.02921 0.01282 0.4410 -0.0092
solution

Pagano's
0.508 0.624 0.0253 0.0108 0.439 -0.0083

solution

100 Present 0.5029 0.6185 0.02507 0.0118 0.4459 -0.00824
solution

From Tables 1-3, it is shown that the center deflections and stresses are slightly smaller
than those obtained by Khdeir. This is because the present theory includes the effect of
transverse normal strain (833) and stress (0"33)' While this theory can satisfy the continuity
condition of transverse shear stresses at the interfaces, this is not true for Khdeir's theory.

From Tables 4-6, close agreement for the center deflections and stresses of the present
theory and the exact solution obtained by Pagano are observed for different side-to­
thickness ratio and lamination schemes, which proves that the displacement field and trial
transverse and normal stresses field of the present theory are appropriate and reasonable.

In the present work, transverse shear stresses '31 and '32 and transverse normal
stress '33 are obtained from eqn (8), which satisfy the top and bottom surfaces boundary

Table 5. Center deflections and stresses of 0°/90°/90°/0° laminates

S Theory U3 ~II (~) ~22 (~) ~2J(0) lJ31 (0) lJ12 (~)

Pagano's
1.954 0.720 0.663 0.292 0.291 -0.0467solution

4 Present
1.884 0.7364 0.5908 0.2343 0.2285 -0.04612solution

Pagano's
0.743 0.559 QAOI 0.196 0.301 -0.0275solution

10 Present
0.7097 0.5499 0.3813 0.1548 0.3085 -0.02678solution

Pagano's
0.517 0.543 0.308 0.156 0.328 -0.0230solution

10 Present
0.4980 0.5315 0.2984 0.1245 0.3340 -0.02246solution

Pagano's
0.4385 0.539 0.276 0.141 0.337 -0.0216solution

100 Present
0.4247 0.5267 0.2648 0.1 123 0.3440solution -0.02087
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Fig. 5. Thickness variations of stresses.

conditions prescribed by eqn (20) (also see Fig. 5). Reddy (1984a) pointed out that the
alternate procedure of computing the transverse stresses by integrating the equilibrium
equations using the in-plane stresses found directly from the displacement solution yields
more accurate results.

The first-order zig-zag theory proposed by Murakami (1986) is a particular case of
this present theory. The author has applied it to the bending problem of rectangular plates.
For 0°/90% ° plate, better results were obtained, but for 0°/90% °/90° and 0°/90°/900 /0°
plates, the first-order zig-zag theory deviates significantly from the exact solution. However,
the present theory is still very good when compared with the exact solution. Obviously, the
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Table 6. Center deflections and stresses of 0°/90°...0° (9 layers) laminates

S Theory ii, ~11 (~) ~22C:) ~dO) ~'l(O) ~12 (~)

Pagano's
I.7590 0.684 0.203 0.223 -0.0337

solution

4 Present 1.7501 0.6620 0.02946 0.1990 0.2458 -0.03333
solution

Pagano's
0.6520 0.551 0.226 0.247 -0.0233

solution

10 Present
0.6409 0.5341 0.02286 0.1878 0.2773 -0.02296

solution

present theory is suitable for arbitrary laminated configurations, so it is the development
of the first-order zig-zag theory.

5. CONCLUSION

An improved high-order shear deformation theory based upon Reissner's mixed vari­
ational principle in conjunction with the state-space concept is developed to determine
the bending problems for rectangular laminated composite plate. Numerical results are
presented for different edge conditions, aspect ratios, lamination schemes and loadings and
are compared with Khdeir and Pagano's theories. The comparison indicates that the present
theory accurately estimates in-plane responses, even for small side-to-thickness ratios and
large layer laminates.
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