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Abstract—A new high-order refined shear deformation theory based on Reissner’s mixed variational
principle in conjunction with the state-space concept is used to determine the deflections and stresses
for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials
are introduced to approximate the in-plane displacement distributions across the plate thickness.
Numerical results are presented with different edge conditions, aspect ratios, lamination schemes
and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir
indicates that the present theory accurately estimates the in-plane responses.

1. INTRODUCTION

Three-dimensional elasticity solutions for the bending of simply supported thick orthotropic
rectangular plates and laminates were obtained by Srinivas and Rao (1970), Srinivas et al.
(1970), Hussainy and Srinivas (1975) and Pagano (1970). The Navier solution of simply
supported rectangular plates was developed by Whitney and Leissa (1969) for classical
laminate theory, Whitney and Pagano (1970), Bert and Chen (1978) and Reddy and Chao
(1981) for the first-order shear deformation (i.e. the Reissner-Mindlin plate) theory, and
by Reddy (1984a,b) and Reddy and Phan (1985) for refined shear deformation theories.
The Lévy type solutions were developed by Reddy et al. (1987) for symmetric laminates
with different combinations of free, clamped and simply supported boundary conditions
by using the first-order shear deformation theory. Khdeir et al. (1987) later extended
Reddy’s work by using refined shear deformation theory.

Murakami (1986) proposed an improved in-plane response theory based on Reissner’s
(1984) mixed variational principle and applied it to cylindrical bending problem of lami-
nated plates, the improvement was achieved by including a zig-zag shaped function to
approximate the in-plane displacements across the thickness. However, this theory cannot
exactly describe the deformation of the anti-symmetric and irregular laminated plates.

Based upon Murakami’s theory, Legendre polynomials are introduced in the dis-
placement field and the transverse normal strain is also included in present theory so
that the in-plane displacement distribution for arbitrary laminated configurations can be
determined exactly. The advantage of using Reissner’s mixed variation principle is that
it automatically yields the appropriate shear correction factors for the transverse shear
constitutive equations. Other attractive features of the present theory are : (1) the continuity
condition of transverse shear stresses at the interfaces is satisfied; (2) the effects of the
transverse shear and transverse normal strains are accounted ; (3) the number of equations
remains unchanged as the number of layers increases.

The accuracy of the present theory is examined by applying it to bending problem of
rectangular laminates with two opposite edges simply supported and the remaining edges
subject to a combination of free, simply supported and clamped boundary conditions.
Different aspect ratios, lamination schemes and loadings are considered. The state-space
concept is used to solve the ordinary differential equations.
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2. GOVERNING EQUATIONS

Consider an N-layer laminated composite plate, shown in Fig. 1. The following
notation, ( )®, k=1, 2... N, will designate quantities associated with the kth layer. The
thickness of each layer is n®h. Unless otherwise specified, the usual Cartesian indicial
notation is employed where Latin and Greek indices range from 1 to 3 and 1 to 2,
respectively, Repeated indices imply the summation convection and ( ) ; denotes partial
differentiation with respect to x;.

Constitutive equations for orthotropic layers (Murakami, 1986):
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- 3
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2P 0 0 Cee 2612 C33
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Fig. 1. Plate geometry coordinate system and trial in-plane displacements.
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interface continuity conditions
u® =u®*Y and oP =o¥*Y k=12...N-1; (3)
upper and lower surface stress conditions

h
e =T on x;,= 3 (4a)

h
oM =T on x3=— 7 (4b)

Reissner’s mixed variational principle was applied to N-layer composite plate whose
middle surface occupies a domain D in the x,, x,-plane:

jj. [ZJ k){ée(")a(")+[u(") +ufl—2e$ (.. )I0TR +[uds —ef(.. )16t} dx3]dx1 dx,
Dl k Jal

h
= J [Z J 6u§k)"T§k)dx3]ds+Jj I:éu,(»”(xl,xz,—>T,*
ooy Lk Ja® D 2

h
_5u§N)(xlsx2’_§)Ti—]dxl dx29 (5)

where 0D, denotes the boundary of D with outward normal v, on which tractions 7; are
specified and 4® represents the x;-domain occupied by the kth layer. Also 7§ denote the
approximate transverse stresses and e$? ...implies the appropriate right-hand side of eqn
(1b).

The high-order laminated plate theory, which takes into account the effect of transverse
shear strains, is obtained by including the Legendre polynomials of order n = 1, 2, 3, with
respect to the x;-coordinate to a zig-zag in-plane displacement variation of amplitude S;(x,,
x,) across the plate thickness.

The appropriate trial functions used in connection with Reissner’s mixed variational
principle eqn (5) are taken to be:

(a) trial displacement field (see Fig. 1)

e
n®p

u® (x1,x2,%3) = Ui(x1, %)+ g‘yi(xl’xZ)Pl(C)+Si(xlax2)(_l)k
h\? 3
+ (5) &ixr, x2) P2 (0) + (‘2'> ®©;(x,,x;)P;((), (6)

where { = 2x,/h and P,({) are the Legendre polynomials of order » and ®; =0, x is a
local x;-coordinate system with its origin at the center x{ of the kth layer, i.c.

xP =x,—-x8; @)
(b) trial transverse and normal stresses

7§ (xl’x21 X3) = Q(k)(xl,xZ)Fl (z)+R§k)(x1,x2) Fy(2)
+ IB(xX1, %) Fs (2) +[TE D (xy, x,) + TH(x,, x,)1F4(2)
+[TE D (xy, x2) — T (x4, x2)1Fs(2) (8a)
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T80, X0, x3) = Q%1 X2)F1 (2) + RP (x1, x2) Fo(2)
+ IO (xy, x2)F3(2) + 1 (x), x3) F4(2)
FITE V(30 x0) + T (x1, x2)] Fa(2)

+ [T(sk_l)(xn X3)— Tgk)(xl ,X2)]Fy(2), (8b)
where
9
FE) = ( 1—6~>, B@ = o h)2 Dz )
05 1 15 3
Fi(z) = n""h)3 (202 —6z” +4) F(z) = 35z* ——z +E
3 05 5
Fi(z) = 102° — 7% Fe(@) =—— <3625- 142° + Zz)
)
—315 s , 15
F,(2) —( Oy (1122° —402° +3z), Fs(2) = 1262° =35z +§z 9)
© 1
= -z <z<3.
z n®pn 2 z 2
Also
(W, RP, J) = j (1, <y, (10a)
Ak
IP = j x$3 08 dx,. (10b)
ol

Ineqn (8), T*~Y and T are the values of ©§ at the top and bottom surfaces of the
kth layer, respectively, from eqn (4)

TO =T+ and T™ =T;. (1)

The functions F;(z), i = 1...8 are obtained by first noting that eqn (6) yields cubic
variations across the plate thickness of in-plane stresses. From the equilibrium equations
(i.e. o, = 0), transverse stresses %) and ©§) may, as a result, be represented by polynomials
of degree 4 and S in z, respectively. Their corresponding coefficients are then computed by
using eqns (10a, b). This yields the functions Fi(z).

Substituting eqns (6) and (8) into eqn (5), using Gauss’ theorem and the orthogonality
relationship of the Legendre polynomials, one obtains laminated plate equations:

(a) equilibrium equations

NuatT7 =T =0 (12a)

M ,—Ny+ {21-(T,-+ +T7)=0 (12b)
Zuja—Kai =T = (= )"T7] =0 (12)
Lua=3Mat (17 =17y =0 (124)
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? n
Ppup— (5Lsa+ ;Nk)w*- n T +T7)=0, (12¢)

x h 2
[Nmﬁ’Muﬁ,ZaﬁaLzﬂsPaﬁ = 2 9_PI(C)’("'1)‘C @1’
=1 J 4 2 n®h

(") P, (0), (”) Ps(f)] ®dx, (13a)

[Ny, M3, Ky 25, Ly = Z k)[ 5Pi). (— ) (k)h

k=1 j 4U

2
(= X‘s"’, (h) Pz(i}}f Pdxs;  (13b)

n@©h

(b) constitutive equations
(1) for transverse stresses

8J n""h
(niff);,)z 30

k) __
%

5 T+ TE)

n®h

2 h i
+ a (3n$,""2 )é; .t %-(522"‘}2 Z)q)“] (14a)

= —hn"" 3 [U3a+\l’ - Su(— I 2 A (Fs 4 3E,)

2
{ {k)z
SRY = 40" (T¢D —T®)
- zfin(m FO I, 438 +8;,(— 1) +3mmPE;,+50,) |  (14b)
120 3 a 3a n(’"h 3
141;’0 (’"h 3K’
QS‘)”‘( (k)b)z (T(k !)+T(k)) = ___4__(,}_,,(&13 ~(k)(§ .+ 5D,) (14(;)
n

L -0~ 57 +3R§k) __ 1L peen SJED 3REHY
5;") 12 3(n(k)h)2 TIn®h 6§k+1) 12Q¢ ~3(ﬂ(k+l)h}2—7n(k+l)h

A __n(k) 1 n® g+ . pl+D .
126{ T )+8(}3;+5<k+1))T() ~(k+1)T‘S‘H)]; (14d)

(2) for normal stresses

8J§ n(")h
Q(k} ((k)h)z (T“ ”+T‘*’)

2h
= ?n‘k)cg’g’ [‘P; +85(=1)F +3Im""§3:} j-n"" [U%»hn"‘"l‘

n®p

1‘!2 - 3
+—-2—(3n§:"’2 1)64—” (Sng"”-%ng‘})@} (152)
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(15b)
147§ n®h 3n
OF — o T Ty TETUHTE) = - e S, (15¢)
(k) ()2
1R(") _ 1513 ” h(T(k DTy = _1 1 n®sP, (15d)

e 2,,«02;,3 2688

(k) (k+l k k+1
—11 ) ( ) R(3 +1)
12 c(k) c(k+1) 2h n(k)c(k) n(k+1)cgk3+l)
l: J(k) Jgk+ 1) ZQ ng) I(3k+ 1)
3h2 n(k)2c(k) n(k+1)2C(3k3+]) h3 n(k)3c(3k3) n(k+l)3cgk3+1)

h (k) ) n(k) plk+b « gl
_ ) (k+ 1)
13[ (k) T3 +10( m + c&"f”)n + D TY } (15¢)

In eqns (14a—) and (15a—d), k ranges from 1 to N, while in eqns (14d) and (15¢), &
ranges from 1 to (N —1). Also, no summation on « is implied in eqn (14) and

o0 = 8cQ+ 00, a =28 (16)
(7 Ul,l U2.2
q’ ‘}ll,l \IIZ,Z (k)
. €13
Sl=18, S [C”] . an
é é],l 62,2
@ o, O,

By solving eqns (14) and (15), Q¥, R® J® i) and T¥® are obtained in terms of U,,
¥, S, ¢ and @, and their derivatives. As a result, the quantities N,;, M;;, Ks;, Z,,, L, of
eqn (13b) can be determined as functions of these displacement variables. Such expressions
will automatically include the appropriate shear correction factors by virtue of the Reissner
mixed variational principle.

The equilibrium equations (12) are supplemented with the following suitable boundary
conditions:

specify U; or N,v,

specify ¥, or My,

specify S; or Z,v,

specify &, or L.y,
specify®, or Pg,v;. (18)

The remaining constitutive equations for N4, M,s, Z.5 L.; and P, are obtained by
substituting eqns (1a), (6) and (8b) into eqn (13a) to yield
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1
Y
1 - S
Y [Nd) [Ne] 0 [N [Nal Y
. My] Mg [M] [Mg] h¥
2 | = JNG (2] (Ze) | |8
i Symmetric (L] (Lol 4
RE| L [(Pa) | |b'e]
1p
[
T 0y (@
B4ERE!
yo | | A%
N
+ -2 %y 1 ; (19)
P k=1 ‘;J:;
vt | h
vl
A

where N = [Nn,sz,Nxz]T,Q= U1, Uy, U‘,2+U2'1}T with same expressions for M,
Y...P, @, [N]...[Ps] are 3 x 3 matrices, [C]® is a 15x 5 matrix and V'V... V” are 1 x4
vectors.

3. BENDING OF RECTANGULAR LAMINATED PLATES

The proposed theory can be used to solve the bending problem of rectangular plates
for which two opposite edges are simply supported. The other two edges can each have
arbitrary boundary conditions. Here we assume that the edges parallel to the x,-axis are
simply supported, and the origin of the coordinate system is taken as shown in Fig. 2. The
simply supported boundary conditions can be satisfied by trigonometric functions in x,.
The resulting ordinary differential equations in x, can be solved using the state-space
concept.

The prescribed boundary conditions on the top and bottom surfaces of the plate are

T2

.

™~ a e |
Fig. 2. Geometry and coordinate system of rectangular plate.

SAS 31:18-E
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h
=T =0, Tf =¢ onx3=§ (20a)

h
Ti =Ty =T; =0 onx;= —5. (20b)

The following representations of the displacements and loading are assumed :

F AU () ] [ hUom(x2) ]
U, {le(xz) U, ‘ilzm(x2)
¥, . k§1m(x2) ¥, o hszm(xz)
Ss|=3 1. cosax, | S; | =Y | 1., sinox;,
él m=1 gélm(XZ) 52 m=1 ZéZm(xl)
D, | &, 1.
_;;q)]m(xz)J »h_i‘pzm(xz)J
U hlj3m(x2)
3 -
lP o \P3m(x2)
3 ~ .
g | = L | BSs(x) | sinax, @b
3 m=
1.
2 e
g= ) Qulx))sinax,, (22)
m=1

where o = mn/a and U,,,...¢&,, and Q.. denote amplitudes of U, ... ¢; and g, respectively.
It is easily proven that eqn (21) can satisfy boundary condition of simply supported on
x;=0,agie.atx, =0,a

U;=¥=8=¢=0 and N,=M, =2, =L, =P, =0 (23)
Then inserting eqn (21) into constitutive equations and these with eqn (22) in turn into the
equilibrium eqgn (12), yields a system of fourteen ordinary differential equations in the x,-

coordinate, which can be reduced to a single matrix differential equation using the state—
space concept (Franklin, 1986)

X' = AX+B. (24)
This can be done by introducing the variables
X =00, 0¥ ¥ 1S S i 1l im® im®im s U« o @200 @2 U U . EsnEsl T
where A is a 28 x 28 matrix which depends on the volume fractions n® and elastic constants
¢;and Bis a 1 x 28 vector which depends on Q,,..

The solution of eqn (24) is given by

o

X= eAXzK+eAfo ' emBdy, (25)

—bf2

where K is a 1 x 28 constant vector to be determined from the boundary conditions, while
e** is defined by
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e‘llxz 0

et

e = [L] e @9)
0 P Lat)

where [L] is the matrix of eigenvectors, A,(i = 1,2...28) denote the distinct eigenvalues
associated with the matrix 4 and [L] ™' is the inverse of the matrix [L].

The following boundary conditions are used on the remaining two edges (i.e. the edges
parallel to the x,-axis) at x, = +5/2:

simply supported
Uy=¥,=8=(£=0,=0
Uy=¥,=8;=¢(=0
Nyy=Myy=2Z,,=L;;, =P, =0, (27a)
clamped
U =¥ =8 =¢(£=0=0
Uy=¥,=85,=(=0,=0
Us=¥;=8;=§{=0; (27b)
free

Ni,=Ny =Ny =0

My, =My =M;=0

Z =2y =25 =0

L, =1Ly =Ly =0

P, =P, =0. 27c)

4. NUMERICAL RESULTS AND DISCUSSION

The following numerical examples are presented :
(a) Numerical results are presented for orthotropic and symmetric cross-ply (0°/90°/0°)
plate with same thickness layer subject to three types of loads ; uniformly distributed load
(q,), triangular distributed load (2¢,) and concentrated load p, as shown in Fig. 3.
The following dimensionless orthotropic material properties are used :

E[ E2
GIZ _ Gl3 _ G23
E = 6.10 E - 3.71 E 6.19

Vlzzvl3=V23=O.4‘4 E0=IX106pSi.

qo
29
goa
L]
S R —— s 8 —spa— G
2 2 2 2

Fig. 3. Various types of transverse loads.
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All results are compared with Khdeir’s solution (Khdeir ef g/., 1987) as shown in
Tables 1-3. Tables 1-2 contain center deflections #; for orthotropic and symmetric cross-
ply (0°/90°/0°) plates, while Table 3 contains non-dimensionalized axial stresses &,, for
cross-ply (0°/90°/0°) plate.

The following notation has been used throughout the tables:

SS  simply supported at x, = —5/2 and at x, = b/2;

CC clamped at x, = —b/2 and at x, = b/2;

FF  free at x, = —b/2 and at x, = b/2;

SC  simply supported at x, = —5/2 and clamped at x, = b/2;
SF  simply supported at x; = —5b/2 and free at x, = b/2;

CF clamped at x, = —5/2 and free at x, = b/2;

UN  uniformly distributed load ;

TR  triangular distributed load ;

PL  point load at the center of the plate.

Figure 4 shows the thickness variations of axial stresses &,, of (0°/90°/0°) laminated
plate for various boundary conditions.
(b) Center deflections and stresses for cross-ply plates under sinusoidal transverse loading

. .m T
e = g, 8in— X, COS X
q4=qo P b2

are calculated. The plates are simply supported at four edges. The numerical results are
compared with exact elastic solution obtained by Pagano (1970).
The following material properties are used :

E, E,

E, 5 E, U Ey=FE,
G G
“EJ;%=0.5 Gl3=GIZ ‘”E’i’izo.z

Vig = Vi3 = vy =025 Ey = 1x10° psi.

We follow Pagano’s non-dimensionalization and write the center deflection and stresses
in the form:

3
7, = 100E,h " (g 0 0)

q0a4 29 bl
. " a ) h a
011 =;(‘)';l;0'11<‘2'50>x3), 622:?1:);1*2622 (570,%)
_ W b _ h a b
Tn‘*—;;‘;gﬁz Ds_§3x3 3 ‘523:;&“123 53’5,—’(3
h h a
Ty = — Fi3 = — =0, .
T3 qoafat(oag,xs), J33 qoaan (2 X3)

Also
X, =x;/h S =alh.

Tables 46 show the center deflections and in-plane stresses and transverse shear
stresses of the various side-to-thickness ratios for cross-ply rectangular plate (0°/90°/0°,



Table 1. Center deflections &, of orthotropic plates

SS CcC FF sC SF CF
Khdeir’s Present Khdeir’s Present Khdeir's Present Khdeir’s Present Khdeir’s Present Khdeir's Present
a/b hja Loading  solution solution solution solution solution solution solution solution solution solution solution solution
UN 6.29 5.632 3.19 3.183 224.4 221.015 4.38 4.137 50.14 49.025 17.055 17.064
0.2 TR 9.60 8.537 5.29 5.198 289.2 284.581 6.98 6.509 66.30 64.607 24.49 23.688
PL 20.95 18.564 14.46 13.131 3714 363.787 17.09 15.071 93.46 89.541 40.99 38.443
3
UN 14.23 13.512 5.89 5.881 593.1 590.463 8.74 8.498 124.72 121.714 40.13 39.771
0.14 TR 21.15 19.874 9.71 9.592 761.9 756.991 13.71 13.017 163.50 160.533 55.13 53.976
PL 42.38 39.931 25.711 24.2717 966.8 958.142 31.83 29.976 222.8 199.124 87.19 84.818
UN 2.72 2.293 1.53 1.529 226.3 222.999 2.03 1.871 34.64 33915 8.07 7.873
0.2 TR 4.47 3.738 2.68 2.635 291.6 287.178 344 3.121 46.13 44,991 11.91 11.534
PL 12.38 10.033 9.10 8.002 374.6 367.125 10.53 8.834 67.12 63.957 23.69 21.839
4
UN 5.70 5.211 2.66 2.657 599.1 596.741 3.76 3.591 83.60 81.914 17.53 17.079
0.14 TR 9.14 8.227 4.66 4.432 769.6 764.697 6.32 5.827 110.34 108.612 2536 24.302
PL 23.36 21.003 15.59 14.417 976.6 967.934 18.66 17.144 154.51 151.751 47.13 45.291
UN 1.46 1.148 0.88 0.883 227.1 223.913 1.14 1.014 25.97 25.465 4.29 4.213
0.2 TR 2.52 1.959 1.59 1.552 292.8 288.391 2.01 1.748 34.76 33.936 6.71 6.512
PL 8.39 6.204 6.32 5.327 376.1 368.745 7.27 5.721 51.86 49.151 15.77 14.267
5
UN 2.85 2.494 1.49 1.492 601.8 598.976 2.03 1.911 60.68 58.196 8.87 8.403
0.14 TR 4.84 4.014 2.70 2.613 773.2 767.899 3.56 3.071 80.51 78.877 13.58 12.978
PL 15.15 13.455 10.69 9.884 981.3 972.176 12.57 11.224 115.45 113.006 29.86 28.035

iy = [us(af2, 0, 0)/golEy,  a = 200in.

£105Y) UONEWLIOJAP JBays pauyal Iapio-y3iy Jo uonnjos Furpusg
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Table 2. Center defiections i, of cross-ply 0°/90°/0° laminates

SS ccC FF SC SF CF
Khdeir’s Present Khdeir’s Present Khdeir’s Present Khdeir’s Present Khdeir’s Present Khdeir’s Present
a/b  hla Loading solution solution solution solution solution solution solution solution solution solution solution solution
UN 6.85 6.376 3.86 3.861 2159 214.727 5.10 4.905 47.67 47.296 18.86 18.591
0.2 TR 10.23 9.491 6.18 6.123 2117 276.120 7.87 7.532 62.82 62.211 25.97 25.529
PL 20.61 18.460 14.92 13.83 354.5 351.160 17.34 15.813 87.27 85.245 47.32 43.621
3
UN 14.88 14.421 6.90 6.897 585.5 585.5 9.81 9.674 121.06 120.502 41.87 41.227
0.14 TR 21.80 20.960 11.08 11.026 751.3 748.052 15.05 14.782 158.35 157.397 57.09 56.079
PL 41.18 39.867 26.33 25.818 949 .4 944936 31.99 31.053 2134 211.454 87.32 85.433
UN 312 2.811 1.87 1.872 217.8 216.723 2.43 2.274 32.34 32.198 9.03 8.902
0.2 TR 4.99 4.409 3.19 3.135 280.2 278.713 4.00 3.709 42.98 42.663 13.06 12.813
PL 12.47 10.871 9.48 8.485 357.6 354.452 10.85 9.375 61.72 60.065 24.09 22.678
4
UN 6.23 5.927 321 3.181 591.4 589.061 4.38 4212 80.07 79.785 18.88 18.544
0.14 TR 9.78 9.159 5.47 5.431 758.9 755.841 7.18 6.912 105.47 105.008 26.99 26.453
PL 23.01 20.813 16.16 15.832 959.1 945.404 19.00 18.368 146.04 144.705 47.58 46.573
UN 1.73 1.545 1.08 1.074 218.7 217.661 1.38 1.245 23.78 23.761 4.95 4.887
0.2 TR 291 2.514 1.90 1.852 281.3 279.948 2.37 2.112 31.80 31.666 7.53 7.385
PL 8.64 7.109 6.65 5.962 359.1 356.743 7.59 6.949 46.90 45.544 16.11 14.862
5
UN 3.23 2.963 1.82 1.802 594.2 591.939 241 2.316 57.29 57.232 9.84 9.682
TR 5.36 4.859 321 3.196 762.6 759.587 413 3.915 7591 75.726 14.81 14.527
PL 15.19 13.964 11.21 11.014 963.8 959.284 12.97 12.415 107.72 106.813 30.33 29.535

iy = [us(a/2, 0, 0)/qolEy,  a = 200in.
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Table 3. Axial center stresses @,, of cross-ply 0°/90°/0° laminates

88 cC FF 5C SF CF
Khdeir’s Present Khdeir’s Present Khdeir's Present Khdeir’s Present Khdeir’s Present Khdeir's Present
alb  hja loading  solution solution solution solution solution solution solution solution solution solution solution solution
UN 1.082 0.973 0.482 0.480 19.66 19.082 0.729 0.691 4272 4,064 1.098 1.020
0.2 TR 2.115 1.808 1.262 1.134 26.51 25.554 1.619 1.426 £.513 6.064 2402 2.148
PL 11.160 10.911 2792 9.735 43.66 42.344 10.386 $0.036 17.708 17.112 12.419 12.143
3
UN 2.106 1.982 0.794 0.729 39.54 38911 1.262 1.209 8.51% 8.003 1.622 1.541
0.14 TR 3.983 3.623 2077 1.934 53.01 51.648 2.784 2.479 12.766 11.879 3.799 3.481
PL 17.928 17.001 14.814 14.211 82.76 80.043 16.049 15.133 30.78 28.333 19.17 18.327
UN 0.620 .582 0.289 0274 19.67 19.091 0.439 0.425 2.602 2432 0.263 0.238
0.2 TR 1.305 1,123 0.802 0.739 26.52 25.569 1.032 0.912 4.213 3.843 1.138 0.982
PL 9.072 8.912 8.082 7.974 43,74 42.827 8.546 8.213 14.181 13.792 10.054 9.862
4
UN 1.156 1.092 0.455 0.423 39.62 38.925 0.725 0.681 5.278 5.081 0.185 0.385
0.14 TR 2.350 2.119 i.260 1.147 53.13 51.992 1.695 1.544 8.319 8077 1.586 1.478
PL 13.949 13.231 11.835 11.521 83.03 80.565 12.735 12.136 24.05 23.588 14.967 14.001
UN 08.427 0.404 0215 0211 19.66 19.098 0.321 §8.315 1.673 1.519 0.027 0.024
0.2 TR 8.927 0.803 $.588 0.533 26.51 25.573 0.756 0.697 2.879 2.552 0.662 .612
PL 7.725 7.589 6.890 6.571 43.75 43.142 7.298 6.943 11.859 11.512 8.680 8328
5
UN 0.759 0.720 0.321 0.306 39.63 38.952 0.507 0.481 3.492 3.315 0,175 0.047
0.14 TR 1.593 1.369 0.883 0.791 53.16 52.024 1.190 1.067 5773 5.485 0.808 0.723
PL 11.476 11.029 9.863 9.583 83.14 80.889 10.592 10.029 19.74 18.502 12.645 11.938

&y = 0,,(af2, 0, h{2)/qoE,, a = 20in.
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Fig. 4. Thickness variations of ¢, for various boundary conditions (a/b = 3, a/h = 5, UN):
(a)— SSSS; (b)—SSCC; (c) —SSFF; (d) —SSSC; (e) —SSSF; (f) —SSCF.

b/a = 3) and square plates [0°/90°/90°/0°, 0°/90°...0° (9 layers)] with the same thickness

layer, respectively.

For the side-to-thickness ratio S = 0, the thickness variations of in-plane and transverse

shear and normal stresses for 0°/90°/0° laminated plate are shown in Fig <
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Table 4. Center deflections and stresses of 0°/90°/0° laminates

2505

h
s Theory a, o, (g) 2.1 (g) ,5(0) P 2 (5>
Pagano’s 2.82 1.14 0.109 0.0334 0.351 —0.0269
solution
4 Present 2.8234 1.1242 0.108 0.03276 03558  —0.02748
solution
Pagano’s 0.919 0.726 0.0418 0.0152 0.420 —0.0120
solution
10 Present 0.9148 0.7193 0.04152 0.01591 04143  —0.01204
solution
Pagano’s 0.610 0.650 0.0299 0.0119 0.434 —0.0093
solution
4 Present 0.6047 0.6439 0.02921 0.01282 0.4410 —0.0092
solution
Pagano’s 0.508 0.624 0.0253 0.0108 0.439 —0.0083
solution
100 Present 0.5029 0.6185 0.02507  0.0118 04459  —0.00824
solution

From Tables 1-3, it is shown that the center deflections and stresses are slightly smaller
than those obtained by Khdeir. This is because the present theory includes the effect of
transverse normal strain (g;;) and stress (¢5;). While this theory can satisfy the continuity
condition of transverse shear stresses at the interfaces, this is not true for Khdeir’s theory.

From Tables 4-6, close agreement for the center deflections and stresses of the present
theory and the exact solution obtained by Pagano are observed for different side-to-
thickness ratio and lamination schemes, which proves that the displacement field and trial
transverse and normal stresses field of the present theory are appropriate and reasonable.

In the present work, transverse shear stresses 7;, and 7;, and transverse normal
stress 753 are obtained from eqn (8), which satisfy the top and bottom surfaces boundary

Table 5. Center deflections and stresses of 0°/90°/90°/0° laminates

h
o Theory 5 an (g) 01 (g) 41;(0) @51(0) G2 (5)
Pagano’s
sortion 1.954 0.720 0.663 0.292 0.291 —0.0467
4 Present
solution 1.884 0.7364 0.5908 0.2343 02285  —0.04612
Pagano’s
sobtion 0.743 0.559 0.401 0.196 0.301 —0.0275
10 Present 0.7097 0.5499 0.3813 0.1548 0.3085 0.0267
solution ’ : : - . —0.02678
Pagano’s
soltion 0.517 0.543 0.308 0.156 0.328 —0.0230
10 Present 0.4980 0.5315 0.2984 0.1245 0.3340 0.0224
solution : : - - E —0.02246
Pagano’s
solution 0.4385 0.539 0.276 0.141 0.337 —0.0216
100 Present 04247 05267 02648  0.1123 03440  —0.02087

solution
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Fig. 5. Thickness variations of stresses.

conditions prescribed by eqn (20) (also see Fig. 5). Reddy (1984a) pointed out that the
alternate procedure of computing the transverse stresses by integrating the equilibrium
equations using the in-plane stresses found directly from the displacement solution yields
more accurate results.

The first-order zig-zag theory proposed by Murakami (1986) is a particular case of
this present theory. The author has applied it to the bending problem of rectangular plates.
For 0°/90°/0° plate, better results were obtained, but for 0°/90°/0°/90° and 0°/90°/90°/0°
plates, the first-order zig-zag theory deviates significantly from the exact solution. However,
the present theory is still very good when compared with the exact solution. Obviously, the
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Table 6. Center deflections and stresses of 0°/90°...0° (9 layers) laminates

h 2% h

S Theory i, &, (5) 2 <?) 33(0) ¢3,(0) &2 3
Pagano’s 1.7590 0.684 0.203 0.223 —0.0337
solution

4 Present 1.7501 0.6620 0.02946 0.1990 02458  —0.03333
solution
Pagano’s 0.6520 0.551 0.226 0.247 —0.0233
solution

10 Present 0.6409 0.5341 0.02286 0.1878 0.2773 —0.02296
solution

present theory is suitable for arbitrary laminated configurations, so it is the development
of the first-order zig-zag theory.

5. CONCLUSION

An improved high-order shear deformation theory based upon Reissner’s mixed vari-
ational principle in conjunction with the state—space concept is developed to determine
the bending problems for rectangular laminated composite plate. Numerical results are
presented for different edge conditions, aspect ratios, lamination schemes and loadings and
are compared with Khdeir and Pagano’s theories. The comparison indicates that the present
theory accurately estimates in-plane responses, even for small side-to-thickness ratios and
large layer laminates.
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